

AGENDA

- 01. HIGH SPEED NETWORK
- 02. WORKS SCHEDULING
- 03. SOLUTIONS
- 04. BALLAST RENEWAL WITH 160KM/H SPEED RESTRICTION

01. HISH SPEED NETWORK

HIGH SPEED LINES

02. WORKS SCHEDULING

RENEWAL WORKS ON PARIS-LYON HSL

Commissioning: 1981/1983

Works:

• **Lifting**: From 1988 => 2006

• Ballast renewal: From 1996

Switches renewal: From 1996 to 2007

• Rail renewal: Since 2008

Track & ballast renewal:
 Planned from 2030 (Except Pasilly: 2018-2020)

RENEWAL WORKS ON ATLANTIQUE HSL

Commissioning: 1989/1990

Works:

- Lifting and rail replacement:
 - tests in 2004 and 2005 (separately and together)
 - Renewal from 2006: Lifting + RR or RR alone (for branches)
- Ballast renewal: Starting in 2015
- Switches renewal: Starting in 2016
- Track&ballast renewal: Scheduled from 2050

HSL TRACK WORKS MASTER PLAN

The theoretical plan (example for 300km/h & 70 000t/d)

0

C: Commissioning

BMO: Big Maintenance Operation

BR: Ballast Renewal RR: Rail Renewal

TBR: Track & Ballast renewal 55y

27y

BMO BR + RR

BMO

TBR

2015-2021 master plan designed in 2012 (example of 2016):

	2016											
	JANVIER	FÉVRIER	MARS	AVRIL	MAI	JUIN	JUILLET	AOÛT	SEPTEMBRE	OCTOBRE	NOVEMBRE	DÉCEMBRE
LGV Paris Lyon									remise au profil AD Digoine		/295 Voie 1 I Voie 2 ails à prévoir	
LGV Atlantique				RB Kms 51,000 à 66,200 et 68,500 à 78,900 Voie 2 (GOM Rails à prévoir à la suite)						5 (Rouvray 988m ent		
LGV Nord	RB Kms 83/87,500 et 88,200/109,700 Voie 1			RR Kms 83/87,500 et 88,200/109,700 Voie 1								
LGV Méditerranée	Remplacement de 12 AD et RB s Rhone Nord, milieu et Sud; Roquemaure N				t Genies							

03. SOLUTIONS

SOLUTIONS FOR THE FIRST WORKS

Solutions based on classic lines methods

•	Ballast renewal	Speed restriction 40 / 60
---	-----------------	---------------------------

• Rail renewal Speed restriction 100

Switch renewal
 Speed restriction 80

Lifting
 Speed restriction 80

CURRENT WORKS SOLUTIONS

	W	orks track	Contiguo	us track 1		Estimated overcost / reference solution				
Works type	Speed restriction	Length	Speed restriction	Length	Average yield per night (with 8h30 shifts)					
Plain track lifting	160/170	14 000	No	one	1200 m					
Ballast renewal	120	4 000	No	one	750 m for 350 clearing under sleeper 550 m for 500 under sleeper	Reference solution				
	160 (clearing 350 under sleeper)	16 000 HCT			Target: 600 m for 350 clearing under sleeper	Target: about 20% (45% for tests)				
	160/170	10 000	None		None 900 m					
Rail renewal	220/230	10 000 or between 2 signalling stations	None or 230 Between 2 signalling stations		900 m	Very small (1%)				
	No restriction (with rails in the track)		None		None T		To be determined	A calculer		
	100	Depending on works	100	If works on V1 & V2,		Reference solution				
Switch renewal	120 if mechanical clearing + stabilisation	length	120	none otherwise		Reference solution				
Expansion Joint	100	Depending on works	100 If works on V1 & V2,			Reference solution				
renewal	120 if mechanical clearing + stabilisation	length	120	none otherwise		Reference solution				
Track & Ballast renewal	120	4 000 in 16 000 HCT area	None		None		None		550 m for 350 clearing under sleeper	Reference solution

Tests performed

Workgroups in

OVER STANDARD SEPT 15-17 2015 - RÉGIS AMBERT SNCF HEAD OF TRACK MAINTENANCE ENGINEERING

03. BALLAST RENEWAL WITH 160KM/H SPEED RESTRICTION

CONTEXT

THE NEEDS:

- Raise capacity of our High Speed Lines during works
- Not suffer from more ballast renewals due to ageing

WORKS METHOD 2012 TESTS

Current methods: 120 km/h speed restriction

2 layers of ballast (230mm after clearing of 350mm under sleeper)

WORKS METHOD

Desired modification: 160km/h speed restriction for 350mm clearing under sleeper

Goal:

Adapt the method (track geometry, ballast height under sleeper) to be able to run at 160km/h (or 170km/h depending on the signalling technology) on the renewed track. Geometry has to stay within the norms (3m Twist \leq 3 mm/3m and vertical alignment \leq 3 mm) with possibility to have isolated defects.

Evolutions:

- Ballast heights
- Stabilization after each lifting

FIRST TEST PROTOCOL IN 2012

Implementation protocol:

1st Phase: (W35/36 2012)

BR tests with new ballast heights. Speed restrictions and application time are the same as usual Two protocols have been implemented during this test campaign:

- L1 200 mm stabilized + L2 40 mm stabilized with BAS + L3 50 mm stabilized with BAS
- L1 150 mm stabilized + L2 80 mm stabilized with BAS + L3 50 mm stabilized with BAS

This first phase led to:

- An evaluation of track stability with new ballast heights
- An evaluation of the renewed track behaviour (stability & levelling) during the day (with commercial traffic) and during a weekend (64h with no work)
- A decision on the feasibility of phase 2 tests.

2012 TECHNICAL FEEDBACK OF THE FIRST TEST

Observations:

- No threshold exceedency implicating a speed restriction has been encountered.
- Track behaviour in terms of alignment (both vertical and horizontal) is satisfactory in plain line and in curves

• **Pumping phenomenon in the last 20m** of the ramp on both rails, probably due to a large quantity of screened ballast used and tamped in the connection with the old track. Tamping was performed without « retour chariot » => machine was lifting the old track of a few mm with no consequences on safety;

2012 : 2ND TEST

Phase 2: (W41/42 2012)

Protocol modified keeping the 120 km/h speed restriction following the pumping phenomenon in the last 20 metres,

Technical processes tested:

 Specific correction (« report chariot ») on the end of the ramp

- 2. In addition to 1, additional dynamic stabilization of R1
- In addition to 1, tamping of R2 with triple dive instead of double

Used values for the last 30m if the ramp following the first test campaign

Observations:

- No threshold exceedency implicating a speed restriction has been encountered
- Track behaviour si satisfactory in terms of alignment (vertical & horizontal) in plain line and in curves.
- Track behaviour of the ramp is satisfactory. The pumping behaviour observed in the first test did not happen again.
- The two additionnal processes have shown no worthy modification of the ramp behaviour.

2012: 3RD TEST

3rd Phase: (W49/50 2012)

Same as phase 2 with 160km/h speed restriction

Observations:

- The clearing/lifting/stabilization method defined in phase 2 is relevant.
- The radar-recorded commercial trains' speed showed an average speed of 150km/h, which technically validates the test campaign.
- The connection ramp between cleared and uncleared track was measured <1mm/m with topography instruments. The requirement (meant to avoid any shock) has been technically respected.

TECHNICAL FEEDBACK 2012 TESTS

Conclusion of 2012 tests

- The 3 test campaigns show it is not necessary to modify the level of monitoring compared to a classical well-known operation.
- The test results show that the project does not rise the level of risk (with protocol adjustments, and verification and application of the Quality Action Plan of the contractor)
- Following a safety report, it has been decided to test the BR160 protocol on a bigger distance in 2013 in order to:
 - Test the reliability of the process
 - Improve geometry quality

The protocol and monitoring policy to implement will be described in our guidelines.

OPERATIONAL FEEDBACK 2013 TESTS ON HIGH DISTANCES

BR 160 AREAS:

<u>Localization</u>: Paris-Lyon HSL, V1 Km373+100 to 378+500

Planning: From Sept 30 2013 to Oct 12 2013 during 10 nights

Goals:

Industrialization of the process

Yield: 5400m which means 540m /night (including specific BR160 monitoring devices installation)

Making the process reliable:

Suppression of rail defects and preliminary tamping

Ramp realization:

- Avoid the bump at the connection
- Guarantee 1mm/m without excessive overtaking
- More demanding geometry
 - « VA non atteinte »
- 2 week-ends with no work to monitor

Additionnal monitoring devices

OPERATIONAL FEEDBACK 2013 TESTS

BR160 is under control in terms of:

- Settling
- Levelling

Difficulties lie in the realization of the ramp between cleared and untouched track.

Remaining difficulties:

- Being able to predict the position of the ramp
- Respect of the 1mm/m ratio everywhere in the ramp
- Machines tolerances cannot be controlled, which causes a risk not to respect the 1mm/m norm.
- Human factor
- Manual calculation of the ramps (Classical Topography)
- Stop at the last sleeper (difficulties of the methodology of « report chariot » => tamping of the uncleared track)
- Avoid the dip before the connection area

These difficulties cause longer ramps (about 200m instead of 100-120m). Calculation of the ramp is made for 0,75mm/m and the ramp goes on on the untouched track for about 50m.

« Lower pantograph » signalling kept because track level is very close to the tolerance in distance from catenary.

Technical feedback of 2013 tests

More demanding geometry

- Avoid the « bump » at the junction with « report chariot »
 - ☐ Increase the length of the ramp on uncleared track.
- 7 1mm/m ramp

Real ramp: 200m

7 Conclusion: Definitive validation of the BR160 process

MAINTENANCE FEEDBACK

Goals: quantify the impact on maintenance of a BR 160

No direct impact of BR160 (low representativity of 2012 test) + Difficult to evaluate the impact before RR

ECONOMIC EVALUATION

Potential improvements:

No specific monitoring as organized for the tests

As a target, BR 160 won't need any specific monitoring.

This will free 20 more minutes compared to test phase.

Optimization: Reduction of the time necessary to realize the ramp.

During BR160 tests, the ramp was about 200m long compared to 100 to 120m usually. This additionnal length generates a 20min loss in effective clearing time.

Automatization of the realization of the ramp

ECONOMIC EVALUATION

Overcosts estimation per night

	Production time	Clearing length	Length of the ramp	Effective production	% loss of length	Overcost (%)
BR 120	2h30	785 m	35 m	750 m		
Test BR 160	1h50	580 m	80 m	500 m	33 %	39 %
Target BR 160	2h10	680 m	80 m	600 m	20 %	20 %
Optimised BR 160	2h20	733 m	80 m	653 m	13 %	12 %

Hypothesis:

- 3h30 of Daily Intervention Time
- Cost of BR120 is estimated for 350mm clearing under sleeper.

CONCLUSION

- ➤ The tests in 2012 & 2013 have enabled us to validate a method to perform ballast renewal with 160km/h speed restrictions
- > The methodology is valid for 350mm clearing under sleeper.
- ➤ Cost is 15 to 20% higher
- This is a very important technical step to decrease the impact of renewal works on our High Speed Lines

