#### Mobile Assessment of Track Asset Data



Kevin R. Day
Assistant Chief Engineer
Technology, Testing & Standards



September 16, 2015



### **CN Rail Information**



### CN - Technology, Testing & Standards

- ➤ Testing and Rail Maintenance Team
  - Rail Flaw Detection (RFD)
  - Geometry and Optical Testing
  - Rail Welding Maintenance, Standards and Auditing
  - Rail Grinding



- Track Inspection System (TIS)
- New Technologies

| , | A TOPON |         |          |  |
|---|---------|---------|----------|--|
|   |         | LORAN A |          |  |
| 2 |         | TO V    | Maria II |  |
|   |         |         | , de     |  |

| Example Engineering Technology RFD Frequency Scorecard |                       |              |          |                         |               |             |                |                     |                 |
|--------------------------------------------------------|-----------------------|--------------|----------|-------------------------|---------------|-------------|----------------|---------------------|-----------------|
| Engineering<br>Region                                  | Engineering Territory | Sub-Division | Track ID | Next Inspection<br>Date | Miles<br>From | Miles<br>To | Total<br>Miles | Winter<br>Frequency | Track<br>Status |
| Eastern                                                | Greater Toronto Area  | BALA         | AA55     | 2015/03/06              | 35.48         | 36.77       | 1.29           | 61                  | 1               |
| Eastern                                                | Greater Toronto Area  | BALA         | AC31     | 2015/01/12              | 92.57         | 93.89       | 1.32           | 46                  | -1              |
| Eastern                                                | Northern Ontario East | BALA         | AC35     | 2015/03/01              | 106.41        | 107.72      | 1.31           | 61                  | 1               |
| Southern                                               | Wisconsin North       | SUPERIOR     | S105     | 2015/01/18              | 260.00        | 262.16      | 2.16           | 46                  | 0               |
| Southern                                               | Wisconsin North       | SUPERIOR     | S112     | 2015/01/18              | 272.30        | 274.30      | 2.00           | 46                  | 0               |
| Southern                                               | Wisconsin North       | SUPERIOR     | S115     | 2015/03/10              | 452.43        | 453.97      | 1.54           | 61                  | 1               |
| Western                                                | Alberta Central       | WAINWRIGHT   | GA10     | 2015/02/24              | 155.90        | 158.20      | 2.30           | 46                  | 1               |
| Western                                                | Alberta Central       | WAINWRIGHT   | GA38     | 2015/02/13              | 169.50        | 172.00      | 2.50           | 36                  | 1               |
| Western                                                | Alberta Central       | WAINWRIGHT   | GA48     | 2015/03/07              | 183.50        | 184.70      | 1.20           | 61                  | 1               |

#### **Engineering Standards**

- Transportation Technology Center Inc (TTCI) research committees
- Rail Safety Advisory Committee Participation
- Connection to Regulatory Agencies
- Owner of CN Engineering Track Standards





### Rail Flaw Detection

#### ➤ Rail Flaw Detection Platforms

- Stop and Verify Testing
- Non-stop Testing
- Portable Hand Testing



### > Frequency of Testing

- Generally test core mainline routes monthly
- Risk based approach to frequency planning
- CN owned yard tracks are tested based on usage and tonnage







## **Geometry Testing**

#### ➤ Geometry Platforms

- Utilize a variety of rail bound units and hi-rail trucks
- Provides foot by foot track measurements (gauge, cross level and curvature) for understanding track condition
- Provides rail profile data for estimating rail wear







### Geometry and Optical Inspection

#### ➤ Geometry Platforms

- Optical track inspection system to identify missing track components
- Joint bar (fish plate) inspection systems
- Deployable gauge restraint measuring system (DGRMS)







### Vehicle Track Interaction (V/TI) Units

#### ➤ V/TI Testing Procedures

- Accelerometers installed on locomotives that identify high impact and alignment locations
- Alerts provided to field forces based on predetermined thresholds
- Utilizing low level alert clusters to identify areas of potential concern
- Send alerts via email and utilize call outs depending on the severity of the alerts







### M-Rail Technology

- > Loaded gondola rail car providing track deflection information
  - Measures vertical rail deflection
  - Data used in conjunction with other geometry testing platforms to identify areas with poor stiffness and support
  - Assists in pinpointing areas with poor drainage and excessive moisture







## Tie Assessment Technology

- ➤ Tie Assessment Technology (TAT)
  - Provide an objective view of tie condition across the CN network
  - Better plan resources and capital programs based on need
  - Long term plan of utilizing the information to provide tie distribution and work gangs the exact locations for removal and installation







## Rail Grinding

- > CN utilizes multiple grinding platforms
  - Switch and crossing (S&C) grinders are used for smaller projects like turnouts and road crossings
  - Production grinders used for out of face grinding
  - Recently added the latest 120 stone production grinder to the fleet to increase production in limited track time windows.
  - Potentially consider rail milling in the future if operating speeds can be

increased.





# Ground Penetrating Radar (GPR)

### A future technology at CN

- Provide a detailed assessment of ballast and subgrade conditions
- Better plan for undercutting programs
- Develop a list of locations to monitor
- Evaluation of supplier systems for moving forward on the right system for CN







## Remote Monitoring of Assets

- Identifying trouble spots and monitoring from a central location
  - Utilizing information from hot journal detectors
  - Monitoring road crossing power status
  - Rock/stabilization areas
  - In the future, use cameras with remote access for areas of known concern







### Future Technology - Drone Inspections

- Protecting the track from potential mechanical issues
  - Potentially use unmanned equipment to optically inspect bridges and track locations
  - Require regulatory approval to operate in the United States
  - Current waivers do not allow for drones to fly out of sight this needs to be resolved for the technology to be useful







## Wayside Detection Systems

- Protecting the track from potential mechanical issues
  - Hot bearing (journal) detectors
  - Dragging equipment detectors
  - Hot wheel detectors 530+
  - Information sent back to a central location for reviewing of trending information and nothing found stops





Installed together – 800+



# Signalized Sidings

- Providing broken rail protection and operational capacity for high usage sidings
  - Created a three year plan in late 2013 to upgrade sixty sidings for signalized protection
  - Plan to complete 50+ by the end of 2015
  - Expect to see a reduction in incidents resulting from broken rails in future years as a result of these upgrades.





## Collision Avoidance Systems

#### ➤ Metrom Aura Project

- GPS/Ultra-Wideband signal system that warns operators prior to collisions
- Began installations in January 2013
- 940 installed on work equipment to date Plan to install 900 by year end

#### Number of collisions









# TTCI Northern Megasite Project

#### ➤ Northern Mega Site Testing

- Working with TTCI to test new materials and processes in extreme environmental conditions
- Located within 150 miles of Winnipeg,
   Manitoba, Canada
- High strength rails, insulated joints, subgrade/frost heaves and top of rail lubrication performance







### Utilizing the Data



## **Engineering Risk Analytics**

Inspect





$$CoSD = \sqrt{w_{AL} * SD_{AL}^{2} + w_{LL} * SD_{LL}^{2} + w_{G} * SD_{G}^{2} + w_{CL} * SD_{CL}^{2}}$$

$$CoSDT = \sqrt{w_{AL} * SD_{AL}^{2} + w_{LL} * SD_{LL}^{2} + w_{CL} * SD_{CL}^{2}}$$



Identify Risk Areas and Schedule for Repair



Use technology and data analytics to manage track quality and identify areas of higher risk



## **Engineering Rail Analytics**

- Four Projects Currently Underway at CN
  - Geometry exception and foot by foot degradation analysis
  - Rail flaw defect and service failure pattern analysis
  - Development of a single database to store and analyze track inspection and exception information
  - Creation of a track health score by track location to identify areas that may be at more risk than others



### **Engineering Rail Analytics Tool**



# Questions



